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Abstract
The Dirac equation has been studied in which the Dirac matrices α̂, β̂

have space factors, respectively f and f1, dependent on the particle’s space
coordinates. The function f deforms Heisenberg algebra for the coordinates
and momenta operators, the function f1 being treated as a dependence of the
particle mass on its position. The properties of these functions in the transition
to the Schrödinger equation are discussed. The exact solution of the Dirac
equation for the particle motion in the Coulomb field with a linear dependence
of the function f on the distance r to the force centre and the inverse dependence
on r for the function f1 has been found.

PACS numbers: 03.65.Fd, 03.65.Pm, 11.30.Pb

Introduction

The problems with deformed Heisenberg algebra with small additions to the canonical
commutation relations have been under a thorough and versatile scrutiny for a period of
time [1–10]. Deformed commutation relations were studied for the first time in [11] where
this issue was raised in connection with the idea of quantization of space. The question of
deformation of the Heisenberg algebra can be approached along purely practical lines when
solving eigenvalue problems. When we have a Hamiltonian in the Schrödinger equation
with the potential not allowing us to find the exact analytical solution of the problem we
can reduce it to a familiar form (for instance to the Hamiltonian of a harmonic oscillator)
using generalized coordinates and momenta that fail to satisfy the Heisenberg algebra. The
permutation relations between these operators are the so-called deformed relations. With
this procedure we transfer the ‘inconvenient’ form of the Hamiltonian into a deformation of
Heisenberg algebra. Sometimes this procedure makes it possible to more effectively find
the approximate solutions of the Schrödinger equation. Some deforming functions allow us
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to treat this kind of transfer of inconveniences from the Hamiltonian onto the permutation
relations as a problem in which the particle mass is position-dependent.

We can start from the beginning with a ‘good’ Hamiltonian having deformed Heisenberg
algebra with a certain arbitrary deforming function dependent on both the coordinates and the
momentum. Generally speaking, we will not always be able to make the inverse transition,
i.e. to ‘toss’ this deformation back to the Hamiltonian. For this matter such problems are
of interest in themselves, similarly to those about the motion of a particle with a position-
dependent mass. At the same time we have to deal with the problem of mutual ordering of
the momentum operators and the inverse mass in the kinetic energy. This problem, however,
does not appear when we resort to the Dirac equation.

Thus, we arrive at the possibility of formulating the problem about the motion of the
relativistic particle with a position-dependent mass in the space with deformed Heisenberg
algebra. To study this problem is the aim of this paper. We also give the exact solution of the
Dirac equation for the motion of a particle in the Coulomb field when its mass and deforming
function are specifically dependent on the coordinates. A preliminary report on these results
was given in [12].

1. The initial equations

Let us start from the Dirac equation for a particle with the potential energy U in conventional
notation:

[(α̂P̂)c + m∗c2β̂ + U ]� = E�, (1.1)

where α̂, β̂ are the Dirac matrices, the coordinates and momenta satisfy the permutation
relations with deformed Heisenberg algebra:



[xj , xk] = 0,

[xj , P̂k] = ih̄δjkf ,

[P̂j , P̂k] = −ih̄

(
∂f

∂xj

P̂k − ∂f

∂xk

P̂j

)
, (j, k) = 1, 2, 3;

(1.2)

with the deforming function f = f (x, y, z) dependent on the particle coordinates only. We
assume that the particle mass m substituted for a certain effective mass m∗ is also position-
dependent:

m∗ = mf1, f1 = f1(x, y, z). (1.3)

The embedding in the Dirac equation of the functions f and f1 implies involvement of extra
forces acting on the particle alongside those represented by the function U. We introduce a
new momentum:

p̂ = f −1/2P̂f −1/2, P̂ = f 1/2p̂f 1/2, (1.4)

in such a way that coordinates and new momenta become canonically conjugated


[xj , xk] = 0,

[xj , p̂k] = ih̄δjk,

[p̂j , p̂k] = 0.

(1.5)

Now the Dirac equation (1.1) looks as follows:

[f 1/2(α̂p̂)f 1/2c + mc2f1β̂ + U ]� = E�. (1.6)

We make the transformation

�̄ = f 1/2�, (1.7)
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as a result of which equation (1.6) for the new function �̄ will be

[f (α̂p̂)c + mc2f1β̂ + U ]�̄ = E�̄. (1.8)

We can treat this equation as the usual Dirac equation in which the Dirac matrices α̂ are
multiplied by certain position-dependent factors:

α̂′ = f α̂, β̂ ′ = f1β̂. (1.9)

The matrix components α̂′ and the matrix β̂ ′ are mutually anticommuting. The squares
of the components of the matrix α̂′ equal f 2, and the square of β̂ ′ equals f 2

1 .
Before we consider the exact solutions of equation (1.8) it is expedient to pass to the

nonrelativistic limit in the Dirac equation in order to find the properties of the functions f and
f1.

2. The nonrelativistic limit: the Schrödinger equation

In order to obtain the Schrödinger equation from equation (1.8) at c → ∞ we introduce the
new function ψ by the following relation:

�̄ = [f (α̂p̂)c + mc2f1β̂ + E − U ]ψ. (2.1)

After substituting (2.1) into (1.8) we find{
f (α̂p̂)f (α̂p̂)

2m
+

m2c4f 2
1 − (E − U)2

2mc2
+

ih̄f (α̂∇U)

2mc
+

ih̄cf

2
β̂(α̂∇f1)

}
ψ = 0.

We measure energy from the rest energy mc2,

E′ = E − mc2,

and after simple transformations we obtain{
f (α̂p̂)f (α̂p̂)

2m
+ U − (E′ − U)2

2mc2
+

ih̄f (α̂∇̂U)

2mc

+
mc2

2

(
f 2

1 − 1
)

+
ih̄cf

2
β̂ (α̂∇f1)

}
ψ = E′ψ. (2.2)

From the latter two terms in the parentheses of equation (2.2) follows the condition on
the behaviour of the function f1 in the nonrelativistic limit. Indeed, for the light velocity c
to drop out of equation (2.2) when c → ∞ it is necessary that f 2

1 − 1 ∼ 1/c2. The function
f1 can lead to one at c → ∞ also faster than 1/c2 leaving no contribution whatsoever in the
nonrelativistic limit. If

f 2
1 − 1 = 2

mc2
U1, c → ∞, (2.3)

where U1 = U1(x, y, z) is a certain function of the coordinates; then from equation (2.2) we
find its nonrelativistic limit:[

f (α̂p̂)f (α̂p̂)

2m
+ U + U1

]
ψ = E′ψ.

We substitute

ψ =
√

f ϕ,
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and assuming that the function f depends on the length r of the radius vector r after simple
transformations using the properties of the matrix α̂ we obtain the following equation:{

(f 1/2p̂f 1/2)2

2m
+ U + �U + U1

}
ϕ = E′ϕ, (2.4)

�U = f

mr

df

dr
(ŜL̂), (2.5)

where Ŝ = h̄σ̂/2 is the operator of the particle spin, σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices,
L̂ is the angular momentum.

Expression (2.4) can be treated as the Schrödinger equation for a particle with the position-
dependent mass m̄ = m/f 2 where the momentum operator and the inverse mass in the kinetic
energy operator are specifically ordered:

T̂ = 1

2m̄1/4
p̂

1√
m̄

p̂
1

m̄1/4
. (2.6)

Unlike the ‘standard’ spin–orbital interaction, expression (2.5) for �U does not vanish in the
nonrelativistic limit. We refer to it as the spin–orbital deformation interaction.

If we write equation (2.4) using the ‘old’ momentum (1.4) we have the Schrödinger
equation in the space with deformed Heisenberg algebra:(

P̂2

2m
+ U + �U + U1

)
ϕ = E′ϕ. (2.7)

Hence, if in the nonrelativistic theory we start from the standard Schrödinger equation for
the study of the behaviour of the particle with the deformed permutative relations (1.2), the
contribution from the spin–orbital interaction �U gets lost as well as the term U1 caused by
the dependence of the particle mass on the coordinates (1.3).

3. The Dirac radial equation

We consider the particle motion in the central symmetrical field U and functions f, f1 to be
dependent on the distance r only. We return to the Dirac equation (1.8) and reduce it to the
radial equation. In order to do so we introduce the radial momentum operator,

p̂r = r−1(rp̂ − ih̄) (3.1)

and a radial component of the matrix α̂,

α̂r = (α̂n̂), n = r
r
. (3.2)

Further, following [13], we use the operator introduced for the first time by Dirac

h̄K̂ = β̂[(σ̂′L̂) + h̄], σ̂′ =
(

σ̂ 0
0 σ̂

)
, (3.3)

and calculating the product α̂r K̂ we transform equation (1.8) into the following:(
f α̂r p̂rc +

ih̄cf

r
α̂r β̂K̂ + mc2f1β̂ + U

)
�̄ = E�̄. (3.4)

The operator K̂ is the motion integral with the eigenvalues

k = ±
(

j +
1

2

)
= ±1,±2, . . . , (3.5)
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j is the quantum number of the total angular momentum. That is why in the representation
where the operator K̂ is diagonal the Dirac radial equation has the form:(

f α̂r p̂rc +
ih̄cf

r
α̂r β̂k + mc2f1β̂ + U − E

)
R̄ = 0, (3.6)

and

�̄ = Y R̄, (3.7)

Y is the spherical spinor, that is the eigenvalue of the operator K̂, R̄ is the radial function. Now
we introduce a new radial function R with the following relation (see also in [14]):

R̄ =
(

f α̂r p̂rc +
ih̄f

r
α̂r β̂k + mc2f1β̂ + E − U

)
R. (3.8)

Substituting this expression into the previous equation (3.6), we find the equation for R:{
c2(f p̂r )

2 + h̄2c2kf β̂
d

dr

(
f

r

)
+ m2c4f 2

1 +
h̄2c2f 2k2

r2

+ ih̄cf α̂r

dU

dr
− ih̄mc3α̂r β̂f

df1

dr
− (E − U)2

}
R = 0.

In order to separate the space variables and those describing the internal degrees of
freedom we demand that the factors at the matrices β̂, α̂r , and α̂r β̂ have the same dependence
on the variable r, i.e.,

C1
d

dr

(
f

r

)
= dU

dr
, C2

d

dr

(
f

r

)
= df1

dr
, (3.10)

where C1, C2 are constants.
If (3.10) holds then equation (3.9) has the form:{

c2(f p̂r )
2 + h̄2c2
̂f

d

dr

(
f

r

)
+

h̄2c2f 2k2

r2
+ m2c4f 2

1 − (E − U)2

}
R = 0, (3.11)

where the operator


̂ = kβ̂ +
i

h̄c
α̂rC1 − i

mc

h̄
α̂r β̂C2. (3.12)

The operator 
̂ does not depend on the radial coordinate and it can easily be reduced to
the diagonal form with eigenvalues

λ = ±
√

k2 +
(mc

h̄
C2

)2
−

(
C1

h̄c

)2

.

If one works in the representation where the operator 
̂ is diagonal, our radial
equation (3.11) finally gets the following form:{

c2(f p̂r )
2 + h̄2c2λf

d

dr

(
f

r

)
+

h̄2c2f 2k2

r2
+ m2c4f 2

1 − (E − U)2

}
R = 0. (3.13)

Let us remark that as the functions f, f1 and U are related by two conditions (3.10), only one
of them is independent; for instance, it could be the potential energy U.
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4. The Kepler problem

Now we consider the Kepler problem, that is the motion of the charged particle in the Coulomb
field when the potential energy

U = −e2

r
, (4.1)

where e2 is the charge squared. From equation (3.10) we find the deforming function

f = 1 + νr, ν > 0, (4.2)

where ν is a constant and the function

f1 = 1 +
a

r
, (4.3)

a is a constant and

C1 = −e2, C2 = a.

Then the eigenvalues of 
̂ are

λ = ±
√

k2 +
(mca

h̄

)2
−

(
e2

h̄c

)2

. (4.4)

After a standard substitution

R = χ

r
, (4.5)

where χ = χ(r), the radial equation (3.13) becomes{
− h̄2

2m

d2

dx2
+

h̄2

2mr2
l∗(l∗ + 1) − e∗2

r

}
χ = E∗χ, (4.6)

where

dx = dr

f
.

From the latter we have

xν = ln(1 + νr), 0 � x < ∞. (4.7)

The values with the asterisk in equation (4.6) are as follows:


l∗(l∗ + 1) = k2 +
(mca

h̄

)2
− λ −

(
e2

h̄c

)2

,

e∗2 = E

mc2
e2 − h̄2k2ν

m
+

h̄2ν

2m
λ − mc2a,

E∗ = E2 − m2c4

2mc2
− h̄2k2ν2

2m
.

(4.8)

The effective orbital quantum number

l∗ =
{√

k2 − ᾱ2 − 1√
k2 − ᾱ2

, ᾱ2 = α2 −
(mca

h̄

)2
, (4.9)

α = e2/h̄c is the fine structure constant; here the upper value of l∗ determines the upper sign
for λ (4.4) and the lower value sets the lower sign, respectively.

Thus, equation (4.6) is split into two independent equations for the positive and negative
values of the quantity λ from (4.4). If we write the radial coordinate r from equation (4.7)
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explicitly through x and substitute r into equation (4.6) then after simple transformations we
arrive at the following equations:{

− d2

dx2
+

A(A − ν/2)

sinh2(xν/2)
− 2B

tanh(xν/2)

}
χ = εχ, (4.10)

where

A(A − ν/2) = ν2 l∗(l∗ + 1)

4
,

B = me∗2ν

2h̄2 + ν2 l∗(l∗ + 1)

4
, (4.11)

ε = 2m

h̄2

[
E∗ − h̄2ν2l∗(l∗ + 1)

4m
− e∗2ν

2

]
.

It is well known that this equation has the exact solution [15] with the energy levels

ε = −
(
A +

ν

2
nr

)2
− B2

(A + νnr/2)2 , (4.12)

nr = 0, 1, 2, . . . is the radial quantum number and bound states exist if

B > A2, A � 0, B � 0. (4.13)

As in our case

A = ν

2
(l∗ + 1),

then from (4.12) taking into account the notation in (4.8) for the energy levels E we find the
following equation:

E2 − m2c4

mc2
= h̄2ν2

2m
(k2 − ᾱ2) − h̄2ν2

4m
n2

+ νe2 E

mc2
− νamc2 − m

h̄2n2

[
e2E

mc2
− mc2a − h̄2ν

2m
(k2 + ᾱ2)

]2

, (4.14)

n = nr + l∗ + 1 is the principal quantum number.
It is significant that the quantity λ drops out of this equation and a dependence on

this quantity remains only in the effective orbital quantum number l∗. Thus, one solution
of equation (4.6) yields the radial function χnr ,l∗ for l∗ = √

k2 − ᾱ2 − 1 with the energy
E = En,k; we have the second solution for the negative sign of the quantity λ in (4.4), it
equals the function χnr ,l∗+1 with the eigenvalue of energy En+1,k . In the nonrelativistic case,
the first solution gives l∗ = l = 0, 1, 2, . . . , and the second one l∗ = l = 1, 2, . . . , where l
is the usual orbital quantum number. Thus the energy levels for the two solutions coincide
with the exception of the ground state. Here we have the so-called supersymmetry. The Dirac
equation (1.8) for the Coulomb potential with the deforming functions f and f1 satisfying
conditions (3.10) reveals supersymmetry. But this issue calls for a separate study. It would be
interesting to compare our result concerning supersymmetry with the results obtained earlier
(see, for instance, [17, 18]). Solving equation (4.14) for E = En,k we finally find

E = νe2

2

(n2 + k2 + ᾱ2)

n2 + α2
+

(mc

h̄

)2 e2a

n2 + α2

+
mc2

1 + α2/n2

{
1 +

ᾱ2

n2
+

(
νe2

2mc2

)2 (
1 +

k2 + ᾱ2

n2

) (
1 + aν +

k2 + ᾱ2

n2

)

+

(
h̄ν

2mc

)2 (
1 +

α2

n2

)[
2(k2 − ᾱ2) − n2 − (k2 + ᾱ2)2

n2

]}1/2

. (4.15)
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The condition for the existence of bound states follows from (4.13):

E

mc2
e2 >

h̄2ν

m
k2 + mc2a. (4.16)

The initial function � contained in equation (1.1) is found from (1.7), (3.7), (3.8) and
(4.5):

� = f −1/2Y

(
f α̂r p̂rc +

ih̄f

r
α̂r β̂k + mc2f1β̂ + E − U

)
χ

r
, (4.17)

where χ is the matrix column with the elements χnr ,l∗ and χnr ,l∗+1.
Formulae (4.15)–(4.17) provide the exact solution of the Kepler problem in the Dirac

theory with Heisenberg algebra that is deformed by function (4.2) with the position-dependent
particle mass in accordance with (1.3), (4.3).

5. Discussion of the results

If in (4.15) we put ν = 0, i.e. we remove deformation, the energy levels for the Dirac charged
particle whose mass is position-dependent are obtained:

E = mc2

1 + α2/n2

(
me2a

h̄2n2
+

√
1 +

ᾱ2

n2

)
, (5.1)

and

a <
e2

mc2

which follows from (4.16). This result was originally discovered in [16] and reproduced in
[19] by a different technique.

The nonrelativistic limit, c → ∞, for expression (4.15) was found. We assume that the
function f1 satisfies condition (2.3), otherwise, we believe that the dependence of the particle
mass on its coordinates makes its own contributions to the nonrelativistic limit. It means that
taking into account the explicit form of the function f1 (4.3) the parameter a ∼ 1/c2. That is
why we take

a = e2

mc2
ā,

where ā is a dimensionless constant. In this case the nonrelativistic limit for the energy E is
as follows:

E′ = E − mc2 = − m

2h̄2n2

(
e2 − h̄2ν

2m
k2

)2

− h̄2ν2

8m
n2 +

ν

2

(
e2 +

h̄2ν

2m
k2

)
+

me4

2h̄2n2
ā(2 − ā),

(5.2)

and in accordance with (4.16) the energy spectrum is limited.

e2 >
h̄2ν

m
k2 + e2ā. (5.3)

It is interesting to compare expressions (5.2) and (5.3) when ā = 0 with the results in
[20] where the Schrödinger equation for a particle in the Coulomb field with the deforming
function (4.2), in our notation, was solved:

E′
QT = − m

2h̄2n2

(
e2 − h̄2ν

2m
[l(l + 1) + 1]

)2

− h̄2ν2

8m
n2 +

ν

2

(
e2 +

h̄2ν

2m
[l(l + 1) + 1]

)
, (5.4)
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with the condition that

e2 >
h̄2ν

2m
[(l + 1)(2l + 1) + 1].

The difference of this expression from formula (5.2) is explained by the fact that the authors
of [20] disregarded the deformational spin–orbital interaction �U which arises naturally in
our treatment in the nonrelativistic limit from the Dirac equation. These authors started from
the Schrödinger equation. If the said interaction is not taken into account, we must deduce the
contribution from

�U = ν2

m
(ŜL̂) +

ν

m
(ŜL̂)

1

r
, (5.5)

which follows from (2.5) and (4.2). As the eigenvalue of the operator (ŜL̂) = (Ĵ2 −L̂2 − Ŝ2)/2
equals h̄2[j (j +1)−l(l+1)−3/4]/2 = h̄2[(j +1/2)2 −l(l+1)−1]/2 = h̄2[k2−l(l+1)−1]/2,

this contribution can easily be taken into account. Indeed, in order to remove the contribution
of �U from our result it is necessary to deduce from the energy E′ the contribution of the first
term in (5.5) equaling h̄2ν2[k2 − l(l + 1) − 1]/2m; the second term in (5.5) should be united
with the Coulomb potential (4.1) by the substitution: e2 → e2 + h̄2ν[k2 − l(l + 1) − 1]/2m.
Consequently, from (5.2) we arrive at expression (5.4). Besides, we must put j = l + 1/2 in
condition (5.3) limiting the spectrum in expression (3.5) for the quantum number k. In other
words, we should take a higher value of k2 = (l + 1)2.

Now we give the next after the zeroth approximation (5.2) term of the development of
energy E(1) by the degrees 1/c2. We represent E(1) as a sum of three terms:

E(1) = �1E
(1) + �2E

(1) + �3E
(1). (5.6)

The correction does not depend on the parameter ν [19]:

�1E
(1) = −me4

2h̄2

α2

n4
(1 − ā)3

[
n

|k| (1 + ā) − 3

4
(1 + ā/3)

]
. (5.7)

At ā = 0 it transforms into the well-known Sommerfeld formula. The correction

�2E
(1) = −

(
h̄ν

8mc

)2
h̄2ν2

2m

(n2 − k2)4

n4
(5.8)

is brought about only by deformation. The cross term

�3E
(1) = νe2

2

α2

n4
[(1 − ā2)n|k| − k2 − n2ā2] +

h̄2ν2

8m

α2

n4

×
{

(n2 + k2)2 + (1 − ā2)

[
2k4 − 3

2
(n2 + k2)2 +

n

|k| (n
4 − k4)

]}
. (5.9)

The obtained results are of general interest. They can also be useful for the study of
the energy spectrum of nanoheterosystems when the electron mass is position dependent and
also whenever it is important to take into account relativistic effects, in particular those of
spin–orbital interaction.

Finally, let us mention that the question of the application of deformed commutation
relations in the Kepler relativistic problem remains open. As the non-deformed Kepler
problem is Lorenz-invariant the question arises whether this property will be preserved in
the deformed space. Though it is well known that the quantum spacetime with deformed
Heisenberg algebra can be Lorenz-invariant [11], it is obvious that in our case the problem
is not like that. A similar controversy was found in [21] that studied the Dirac oscillator
with deformed commutation relations leading to the existence of the minimal length of space.
However, this problem calls for a more detailed investigation to be suggested in my next paper.
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